887 LA Nozzle

Angus Hi-Combat Style 887 LA Self Inducing Monitor Nozzle
P/No. M258269

- Water jet or spray/fog pattern
- Flow 1900 lpm @ 7bar
- Self Inducing model
- Ideal for Industrial applications
- Suitable for use with fresh or brackish water
- Use with Class A or B foam concentrates

The Angus Hi-Combat range of Monitor Nozzles have been designed for a wide range of applications that require a water jet or spray pattern. Whether for extinguishing fires, cooling tanks or other structures, these monitor nozzles will provide reliable and effective protection.

The 887 LA nozzle will deliver a non aspirated foam spray when used with film forming foams such as Angus Petroseal (FFFF) Tridol (AFFF & AR-AFFF) or Alcosol (AR-FFFF). The foam supply can either be premixed remotely or induced using the self-inducing facility on the nozzle.

This nozzle is intended for use with the Angus range of monitors, including the MM1 manual lever operated, OM80 automatic oscillating, HM80 hand monitor and the GMB48 monitor.

887 LA nozzle can be used with the following monitors:

- MM1
- HM80
- OM80
- GMB48

Features include:
- Light weight alloy construction
- Flow 1900L/Min @ 7bar
- In built stream shaper for maximum reach in straight stream mode
- Fitted with turn control bar to change Pattern from straight stream to spray or fog in a single movement
- Interchangeable foam orifice inserts enable variable foam proportioning, 1% or 3% option
- Standard foam pick up hose is 9’ and comes complete with a stainless steel dip tube

Options:
- Foam shut off valve at Nozzle
- Foam drum pick up kit comes with 1m rigid PVC dip tube with integrated shut off and 9 foot pick up hose

Nozzle Inlet:
Inlet 2½” BSP Female swivel
(Optional NH/NST)

Nozzle Weight:
3.6Kg

Nozzle Length:
180mm

Foam Inlet:
Quick release connection
(1½” diameter hose)
887 LA Nozzle

Angus Hi-Combat Style 887 LA Self Inducing Monitor Nozzle

Presssure vs Throw - Water

<table>
<thead>
<tr>
<th>Flow (lpm)</th>
<th>Pattern</th>
<th>Pressure (bar)</th>
<th>Horizontal Reach "A" (m)</th>
<th>Overall "B" (m)</th>
<th>Vertical "C" (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>Straight Stream</td>
<td>10</td>
<td>38.5</td>
<td>61</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Narrow Fog 30°</td>
<td></td>
<td>28.5</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wide Fog 60°</td>
<td></td>
<td>15</td>
<td>24.5</td>
<td></td>
</tr>
</tbody>
</table>

Discharge Height vs Discharge Reach Graphs (m) - Water

Stream Reach

NB: All performance data provided is theoretical only.